

MISSOURI-KANSAS CITY BASIN

FAYETTE NEW CITY LAKE DAM HOWARD COUNTY, MISSOURI MO 10130

AD A105309

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

PREPARED BY: HOSKINS-WESTERN-SONDEREGGER, INC.

FOR: STATE OF MISSOURI

SEPTEMBER, 1978

Approximate trainaso;

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	E B	READ INSTRUCTIONS EFORE COMPLETING FORM
1. REPORT NUMBER 2. G	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PIENT'S CATALOG NUMBER
\mathcal{A}	DA105 301	<i></i>
4. TITLE (and Substite) Phase I Dam Inspection Report	5. TYPE	OF REPORT & PERIOD COVERED
National Dam Safety Program	// Fin	al Report
Fayette New City Lake Dam (MO 10130)	<u> </u>	PORMING ORG. REPORT NUMBER
Howard County, Missouri		
7. AUTHOR(a)	8. CONT	FRACT OR GRANT NUMBER(*)
Hoskins-Western-Sonderegger, Inc.		
) DAG	W43-78-C-0155
9. PERFORMING ORGANIZATION NAME AND ADDRESS		GRAM ELEMENT, PROJECT, TASK
U.S. Army Engineer District, St. Loui	3	A & WORK UNIT NUMBERS
Dam Inventory and Inspection Section,	· · · · · · · · · · · · · · · · · · ·	,
210 Tucker Blvd., North, St. Louis, M		
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer District, St. Loui		ort date tamber 1978
Dam Inventory and Inspection Section,		BER OF PAGES
210 Tucker Blvd., North, St. Louis, M		roximately 45
14. MONITORING AGENCY NAME & ADDRESS(II different from		URITY CLASS. (of this report)
National Dam Safety Program. I	ayette New	
City Lake Dam (MO 10130), Miss sas City Basin, Howard County,	ouri - Kan-	UNCLASSIFIED
Phase I Inspection Report.	missouri.	CLASSIFICATION/DOWNGRADING HEDULE
16. DISTRIB		
Approved for release; distribution uni	.imited.	
1.4.	1 1	r
バンナ	Control 16	
17. DISTRIBUTION STATEMENT (of the abetract entered in Bi	ock 20, if different from Report)	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and ide	ntily by block number)	
Dam Safety, Lake, Dam Inspection, Private	ate Dams	
		
20. ABSTRACT (Continue on reverse side if necessary and ide This report was prepared under the Nat		spection of
		ition of the dam with
respect to safety, based on available	data and on visual	inspection, to
determine if the dam poses hazards to	human life or prope	erty.
		• • •

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

341131

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)	·

DEPARTMENT OF THE ARMY ST. LOUIS DISTRICT, CORPS OF ENGINEERS 210 NORTH 12TH STREET ST. LOUIS, MISSOURI 63101

IN REPLY REPER TO

SUBJECT: Fayette New City Lake Dam (Mo. 10130), Phase I Inspection

Report

This report presents the results of field inspection and evaluation of the Fayette New City Lake Dam (Mo. 10130).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe because of through seepage near the left abutment, ponding, and a large unexplained hole downstream of the dam.

SUBMITTED BY:	SIGNED	15 MAR 1979		
	Chief, Engineering Division	Date		
APPROVED BY:	SIGNED.	19 MAR 1979		
	Colonel, CE, District Engineer	Date		

Acces	sion For			
NTIS	GRA&I			
DTIC	DTIC TAB			
Unanı	Unannounced			
Just	fication			
	ibution/ lability Codes Avail and/or			
Dist	Special			
1) DPSSAZ			
H	1 1			
11				

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM FAYETTE NEW CITY LAKE DAM MO 10130

TABLE OF CONTENTS

PARAGRAPI	I NO. <u>TITLE</u>	PAGE NO.
	Assessment Summary	AS-1
	Overview Photograph	0P-1
	SECTION 1 - PROJECT INFORMATION	
1.1 1.2 1.3	General Description of Project Pertinent Data	1 1 2
	SECTION 2 - ENGINEERING DATA	
2.1 2.2 2.3 2.4	Design Construction Operation Evaluation	5 5 5 5
	SECTION 3 - VISUAL INSPECTION	
3.1 3.2	Findings Evaluation	6 8
	SECTION 4 - OPERATIONAL PROCEDURES	
4.1 4.2 4.3 4.4 4.5	Procedures Maintenance of Dam Maintenance of Operating Facilities Description of Any Warning System in Effect Evaluation	9 9 9 9
	SECTION 5 - HYDRAULIC/HYDROLOGIC	
5.1	Evaluation of Features	10
	SECTION 6 - STRUCTURAL STABILITY	
6.1	Evaluation of Structural Stability	12
	SECTION 7 - ASSESSMENT/REMEDIAL MEASURES	
7.1 7.2	Dam Assessment Remedial Measures	13 13

PLATE NO.	TITLE
A-1 A-2	APPENDIX A - MAPS Vicinity Topography Location Map
B-1 B-2 B-3 B-4 B-5	APPENDIX B - PHOTOGRAPHS Photos 2 through 4 Photos 5 through 7 Photos 8 through 10 Photos 11 through 13 Photos 14 through 16
C-1	APPENDIX C - PLAN, PROFILE AND SECTIONS Phase I - Plan, Profile & Cross Sections APPENDIX D - HYDROLOGIC COMPUTATIONS
D-1 D-2 D-3 & D-4 D-5 D-6 through D-8 D-9 & D-10 D-11 D-12 through D-14 D-15 & D-16	Hydrologic Data Inflow Hydrographs Spillway Rating Computations Combined Rating Computations Input Data (0.5 PMF and PMF) Reservoir Routing (PMF) Reservoir Routing (0.5 PMF) Input Data (100 year) Reservoir Routing (100 year)

PHASE I

NATIONAL DAM SAFETY PROGRAM

Name of Dam State Located County Located Stream Date of Inspection Fayette New City Lake Dam Missouri Howard County Tributary to Adams Fork September 20, 1978

Fayette New City Lake Dam was inspected by an interdisciplinary team of engineers from Hoskins-Western-Sonderegger, Inc. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, office of the Chief of Engineers and developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam is classified as an intermediate size dam with a high downstream hazard potential. Failure would threaten life and property. The estimated damage zone extends five miles downstream of the dam. Immediately downstream of the dam is Rogers Lake Dam (Mo. 10370). Rogers Lake begins approximately 1,000 feet downstream from the Fayette New City Lake Dam. Rogers Lake Dam is approximately 1_4 miles further downstream. Failure of Fayette New City Lake Dam would probably cause failure of Rogers Lake Dam. Within the downstream damage zone of Rogers Lake Dam are fifteen houses, three improved road bridges, one state highway bridge and one railroad bridge.

Our inspection and evaluation indicates that the spillway does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. The spillway will pass the 100-year frequency storm and will just pass the storm equal to 50% of the Probable Maximum flood without overtopping the dam. The Probable Maximum Flood (PMF) is defined as the flood that may be expected from the most severe combination of critical meterorologic and hydrologic conditions that are reasonably possible in the region.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These analyses should be obtained in the future.

Other deficiencies visually observed by the inspection team were weeds, grass and bushes growing through the riprap on the upstream face; weeds, grass, many small trees and bushes covering the downstream face; erosion of the upstream face; seepage from the toe of the dam near the right spillway wall; seepage from approximate permanent pool elevation near the right spillway wall; possibility of seepage along the old stream channel; ponding of water near the downstream toe at the right abutment; inlet to the spillway nearly blocked with tree and brush growth; deterioration of the concrete in the ogee spillway section; horizontal cracks in

the concrete weir; a wire fence along the top of the weir which could collect floating debris and affect flow through the spillway; and open joints in the concrete exit channel.

Several items of preventive maintenance need to be initiated by the owner. These are described in detail in the body of the report.

Harold P. Hoskins, P.E.

Hoskins-Western-Sonderegger, Inc.

Lincoln, Nebraska

PHOTOGRAPH NO. 1 OVERVIEW

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM FAYETTE NEW CITY LAKE DAM - MO 10130 HOWARD COUNTY, MISSOURI

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

- a. <u>Authority</u>. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection of the Fayette New City Lake Dam be made.
- b. Purpose of Inspection. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.
- c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations, and private engineers.

1.2 DESCRIPTION OF PROJECT

- a. Description of Dam and Appurtenances.
 - (1) The dam is an earth fill about 650 feet in length and 35 feet in height. Topography adjacent to the site is moderately steep. Soils exposed on the slopes are lean clays (CL) derived from glacial till or from the underlying limestone and shale formations.
 - (2) The spillway is located on the left (north) abutment and consists of a concrete ogee weir and concrete chute.
 - (3) A 10 inch cast iron water supply line passes through the base of the dam near the right abutment.
 - (4) Pertinent physical data are given in paragraph 1.3 below.
- b. Location. The dam is located in the central portion of Howard County. Missouri as shown on Plate A2. The dam is shown on Plate A1 in the NW 1/4 of Section 4, T50N, R16W. The lake formed by the dam is shown in the NW 1/4 of Section 4, the NE 1/4 of Section 5, T50N, R16W and the SE 1/4 of Section 32, T51N. R16W.

- c. Size Classification. Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph l.lc above. Based on these criteria, this dam and impoundment is in the intermediate size category.
- d. Hazard Classification. Guidelines for determining hazard classification are given in the same guidelines referenced in paragraph c above. Discharges from this dam will flow into Rogers Lake immediately downstream. If failure of this dam could cause the failure of Rogers Lake Dam, this dam would be classed as High Hazard. The damage zone downstream from Rogers Lake Dam includes fifteen houses, three improved road bridges, one state highway bridge and one railroad bridge.
- e. Ownership. This dam is owned by the City of Fayette, 117 South Main Street, Fayette, Missouri 65248. Attention: Bobby Crowley, Superintendent of Water and Sewer Department.
- f. Purpose of Dam. The dam forms a 107 acre municipal water supply and recreation lake.
- g. <u>Design and Construction History</u>. No design or construction records were available for this dam. It was reportedly constructed in 1918. In 1961 the crest of the dam was raised 12 feet from elevation 730 to elevation 742.
- h. Normal Operating Procedures. This lake is used as a supplemental water supply for the City of Fayette. Withdrawal facilities are operated as needed. It was reported that flow through the spillway in 1973 caused some erosion at the lower end which was subsequently repaired with broomed concrete and surface grout.

1.3 PERTINENT DATA

- a. Drainage Area 895 acres (1.4 square miles).
- b. Discharge at Damsite.
 - (1) All discharge at the damsite is through an uncontrolled reinforced concrete ogee type weir and spillway.
 - (2) Estimated maximum flood at damsite unknown.
 - (3) The emergency spillway capacity varies from 0 c.f.s. at elevation 737.2 feet (top of ogee weir crest) to 2080 c.f.s. at elevation 741.2 feet (low point on dam crest and maximum pool level).

- c. <u>Elevation (Feet Above M.S.L.)</u>.
 - (1) Top of dam 741.2 (low point), 742.0 (nominal)
 - (2) Crest of ogee weir 737.2.
 - (3) Streambed at center line of dam $707\pm$.
 - (4) Maximum tailwater unknown.
- d. Reservoir. Length of maximum pool 5,500 feet ±.
- e. Storage (Acre-feet) Top of dam (low point) 1410.
- f. Reservoir Surface (Acres).
 - (1) Top of dam (low point) 117.
 - (2) Ogee weir crest 107.
- g. Dam.
 - (1) Type earth embankment.
 - (2) Length 650 feet ±.
 - (3) Height 35 feet \pm .
 - (4) Top width 21 to 26 feet (measured).
 - (5) Side Slopes.
 - (a) Downstream 3H on 1V (measured).
 - (b) Upstream Exposed section 4H on 1V (measured).
 - (6) Zoning unknown.
 - (7) Impervious core unknown.
 - (8) Cutoff unknown.
 - (9) Grout curtain unknown.
 - (10) Wave protection riprap up to about 2 feet below crest elevation.

- h. <u>Diversion and Regulation</u>. There is a diversion structure for the City of Fayette water supply, 10 inch line.
- i. Spillway.
 - (1) Principal none.
 - (2) Emergency.
 - (a) Type ogee weir.
 - (b) Control section 45° upstream face with nappefitting profile, 75 feet crest length, upstream height approximately 0.5 foot, vertical abutments.
 - (c) Crest elevation 737.2 feet M.S.L.
 - (d) Upstream channel mud and rocks with several small trees and reeds growing within 20 feet upstream of crest.
 - (e) Downstream channel Concrete floor and sidewalls. Floor 4.5 feet lower than crest at ogee weir toe.
- j. Regulating Outlets none.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

No design data were available for this dam.

2.2 CONSTRUCTION

No construction data were available for this dam. It was reported that it was constructed in 1918 and raised 12 feet in 1961.

2.3 OPERATION

The spillway is uncontrolled. A 10 inch water line is used as needed to withdraw municipal water for Fayette, Missouri.

2.4 EVALUATION

- a. <u>Availability</u>. There are no engineering data available for this dam.
- b. Adequacy. Seepage and stability analyses comparable to the requirements of the 'Recommended Guidelines for Safety Inspection of Dams' were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.
- c. Validity. Not applicable.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

- a. General. A visual inspection of the Fayette New City Lake Dam was made on September 20, 1978. Engineers from the firm of Hoskins-Western-Sonderegger, Inc. making the inspection were: Stephen Nickel, Geology and Soil Mechanics; Gordon Jamison, Hydrology and Hydraulics; Garold Ulmer, Civil Engineer; and Richard Walker, Hydrology. Additional information concerning the dam and its operation was obtained from H.D. Rugg, City Water Plant Superintendent. Specific observations are discussed below.
- b. Dam. The upstream slope from the water line to a point 1' below the crest was found to be covered with a light riprap of semi-durable limestone. The riprap appears to be handplaced and is less than 1 foot thick. Erosion to a depth of 15 to 18 inches had penetrated the riprap immediately above the permanent pool elevation at several locations in the vicinity of the water supply outlet works(see Photo No. 5). Weeds and grass were growing through the riprap for the entire length of the dam. A few small bushes were also growing through the riprap.

The downstream slope of the dam was covered by weeds and grasses, with many bushes and small trees. The density of the growth on the lower half of the downstream slope made it difficult to determine the condition of this section of embankment. No slides were noted on the downstream slope. However, seepage was observed near the right side of the spillway, near the left abutment. The seepage appeared to be emanating from two separate areas, one near the downstream toe of the embankment between 30 and 100 feet from the right spillway wall and one on the downstream face of the dam approximately between elevations 732 and 737, covering a width of approximately 3 feet at a distance of about 10 feet from the wall. The flow from the lower seep was estimated to be less than 1 gallon per minute. The flow from the upper seep was negligible, but the embankment surface was wet and the soil was saturated. The seepage water in both seeps was clear.

Near the right abutment there is a diked pond approximately 50 feet downstream from the toe of the embankment. The pond is retained by a road embankment and has a 6-inch pipe riser to maintain a pool level. At the time of the inspection the water level was below the top of the riser, consequently no flow could be measured. This water may be from seepage in the old stream channel. Between this pond and the toe of the embankment was an unexplained hole, approximately 8 feet by 5 feet and up to 2 feet deep. The bottom of the hole was above the level of the pond, and there was no water in the hole.

The abutments apparently consist of plastic silty clay, similar to that in the embankment. The presence of limestone blocks in the embankment would indicate that limestone ledges are probably present beneath the mantle of silty clay, although no outcrops were observed. Neither slides nor seepage were noticed in the abutments.

c. Appurtenant Structures.

- (1) Spillway. The spillway consists of an ogee weir with a concrete outfall or exit channel, built at the left abutment. Spillway details are shown in Appendix C. The inlet to the spillway is riprapped and was found to be nearly blocked with trees and bushes. No erosion of the inlet was observed. The concrete in the ogee section is deteriorating, and the weir had several horizontal cracks from which water was seeping. A wire fence along the top of the weir could affect the operation of the spillway. The seepage water coming out of the ogee weir flowed along the concrete floor of the channel and disappeared into a joint about 25 feet downstream from the weir (see Photo No. 12).
- (2) Water supply inlet. The water supply inlet riser stands in the reservoir near the right abutment. A 10-inch water supply line is said to lead away from the riser. It is not known whether this water line can be used as an emergency drawdown works. No details of the water supply inlet are known. It is not known whether any valves exist on the 10-inch water supply line. No information is available concerning the water supply outlet works. No other outlet works were found.
- d. Reservoir Area. No wave wash, excessive erosion, or slides were observed along the shore of the reservoir.
- e. Downstream Channel. The bottom of the outfall or exit channel below the ogee weir is paved with concrete. Vertical concrete walls and limestone masonry walls form the sides of the channel where it descends through the embankment. Beyond approximately the toe of the embankment, the sides of the channel are formed of broomed concrete. This appears to be a repair of erosion damage. At the end of the concrete channel bottom, the channel narrows considerably and is pretty well overgrown with weeds, bushes, and trees. Channel erosion is not significant. Approximately 1000 feet downstream the channel flows into Rogers Lake.
- f. <u>Downstream Hazards</u>. No residences are located immediately downstream from the dam. However, any significant discharge could affect the operation and stability of Rogers Lake Dam.

3.2 EVALUATION

The heavy vegetation on the downstream slope, especially the lower half, made it impossible to fully observe the structural conditions on the slope. The small trees now growing on the downstream slope, if allowed to continue to grow, would have the potential of causing failure of the dam. The erosion in the upstream slope is a cause for alarm. If this erosion is left unchecked, it could lead to potential failure due to wave action. Additional riprap is needed all along the upstream face to prevent similar erosion in other areas. The trees in the inlet to the spillway and the fence along the top of the ogee section should be removed to allow the spillway to function as intended. The condition of the ogee section of the spillway indicates the need for remedial action to prevent its eventual failure. The joints in the upper portion of the concrete exit channel bottom should be sealed to prevent the infiltration of water. This will also reduce the possibility of failure of the channel bottom during spillway operation. The cause and correction of the seepage to the right of the spillway should be investigated. This seepage, if left uncontrolled, could lead to potential failure of the embankment and/ or the spillway structure.

The source of water in the pond downstream from the toe of the dam and the affects of this impoundment on structural stability of the dam should be investigated. The cause and repair of the hole between the pond and the downstream toe of the dam should be investigated.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

There are no controlled outlet works for this dam, except the 10-inch water supply line, and no regulating procedures exist.

4.2 MAINTENANCE OF DAM

The amount of brush and number of trees on the upstream slope and in the entrance section of the spillway indicate that it has been several years since vegetative control measures have been performed.

4.3 MAINTENANCE OF OPERATING FACILITIES

The only operating facility at this dam is the water supply system which is operated as a part of the total system which includes this reservoir, Rogers Lake and Fayette Old City Reservoir.

4.4 DESCRIPTION OF WARNING SYSTEM IN EFFECT

The inspection team is not aware of any warning system in effect at this dam.

4.5 EVALUATION

Brush and trees growing on the upstream slope, trees and brush growing in the entrance section of the spillway and deterioration of concrete in the spillway could lead to potential of failure if left uncontrolled.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

- a. <u>Design Data</u>. No design data were found for this dam. According to city employees the dam was raised approximately 12 feet about 1961. One page of cross section plans were found indicating the intended change.
- b. Experience Data. The drainage area, reservoir surface area, and elevation-storage data were developed from the USGS Fayette, Missouri and Glasgow, Missouri 7 1/2 minute topographic quadrangle maps. The hydraulic computations for the spillway and dam overtopping discharge ratings were based on data collected in the field at the time of the field inspection.

c. Visual Observations.

- (1) The ogee weir appears to be in poor condition with horizontal cracks and deteriorating concrete. The spillway exit channel appears to be in good condition, except for open expansion joints. The trees and weeds in the approach channel probably would reduce the efficiency of the weir.
- (2) The woven-wire fence attached to the 2-inch iron-pipe posts imbedded vertically into the top of the weir crest could act as a trash collector in a major flood. The resulting stresses could possibly break the weir crest and would destroy the fence.
- (3) The discharges from this lake are impounded in Rogers Lake located about 1000 feet downstream from Fayette New City Lake. It appears that maximum water levels in Rogers Lake would nearly impinge upon the toe of this structure.
- d. Overtopping Potential. The spillway will pass both the 100-year flood and 50% of the PMF without overtopping. The PMF will overtop the dam a maximum of 1.9 feet and for a period of 4.0 hours. The spillway will just pass 50% of the PMF before overtopping the dam. The results of the routing through the reservoir are tabulated in regards to the following conditions.

Frequency	Peak Inflow Discharge c.f.s.	Peak Outflow Discharge c.f.s.	Maximum Pool Elevation	Freeboard Top of Dam Min. Elev. 741.2	Time Dam Overtopping Hrs.
100-Year	1550	720	739.1	+2.1	-
1/2 PMF	3740	2050	741.2	0	-
PMF	7560	6410	743.1	-1.9	5.0
0.50 PMF	3740	2050	741.2	0	-

According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, this dam is classified as having a high hazard rating and an intermediate size. Therefore, the PMF is the test for the adequacy of the dam and its spillways.

The St. Louis District, Corps of Engineers, in a letter dated 11 August, 1978 has estimated the damage zone as extending five miles downstream from the dam. Immediately downstream of the dam is Rogers Lake Dam (Mo. 10370). Failure of Fayette New City Lake Dam could cause failure of Rogers Lake Dam. Within the downstream damage zone of Rogers Lake Dam are fifteen houses, three improved road bridges, one state highway bridge and one railroad bridge.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

- a. <u>Visual Observations</u>. Visual observations which adversely affect the structural stability of this dam are discussed in Section 3. These include the following features: small trees and rank vegetation on both slopes, trees in the spill-way inlet channel, seepage from the embankment near the spillway, ponded water of unknown source near the embankment toe at the right abutment, cracks and deteriorating concrete in the ogee weir of the spillway, the fence along the weir, open joints in the concrete on the bottom of the exit channel, and erosion of the upstream face which has penetrated the riprap in several locations near the right abutment.
- b. <u>Design and Construction Data</u>. No design or construction data were available.
- c. Operating Records. Other than the water supply inlet, there are no operating structures at this dam.
- d. Post Construction Changes. Increasing the crest elevation approximately 12 feet in 1961 and increasing the pool elevation probably could affect the structural stability of the dam. Additional investigation and analysis would be required to evaluate these affects.
- e. <u>Seismic Stability</u>. This dam is in Seismic Zone 1. An earthquake of the magnitude used for design in this seismic zone is not expected to cause structural failure of this dam.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. <u>Safety</u>. Several items were noted during the visual inspection which could seriously threaten the safety of the dam if not corrected or controlled. These items include uncontrolled vegetation on both slopes of the dam, erosion through the riprap at several locations in the upstream slope, seepage from the embankment near the spillway, possible seepage below the dam near the right abutment, uncontrolled trees in the spillway inlet channel, cracks and deteriorating concrete in the ogee weir of the spillway, the fence along the weir, and open joints in the concrete on the bottom of the exit channel. The Probable Maximum Flood will overtop the dam. The spillway will just pass 50% of the PMF before overtopping the dam.

Overtopping of this dam will affect Rogers Lake Dam just downstream from the Fayette New City Lake Dam (See Plate A-1 and Photo No. 16).

- b. Adequacy of Information. Since no engineering or construction data were available, the conclusions of this report are based upon performance history and visual observations. The inspection team considers that these data are sufficient to support the conclusions herein. Neither a seepage nor a stability analysis were found. This is a deficiency which should be corrected in the near future.
- c. <u>Urgency</u>. The remedial measures recommended in paragraph 7.2 should be accomplished in the near future.
- d. Necessity for Phase II. A Phase II investigation is not called for. However, additional engineering data and analyses should be obtained by the owner, at the owner's expense, to evaluate and design the recommended remedial measures.
- e. Seismic Stability. This dam is in Seismic Zone 1. An earthquake of the magnitude used for design in this seismic zone is not expected to cause structural failure of this dam.

7.2 REMEDIAL MEASURES

a. Alternatives. The size of the spillway and/or the height of the dam should be increased and/or the permanent pool elevation should be lowered so that the Probable Maximum Flood can be passed without overtopping the dam. Regardless of which of these alternatives are chosen, additional investigations and analyses should be conducted to determine the structural

characteristics and stability of the present embankment. These analyses should include a seepage analysis to determine the source of seepage near the spillway and to determine whether there is any seepage near the right abutment below the dam. The cause and corrective action for the leaking joints in the exit channel should be studied. The services of an engineer experienced in the design of dams should be obtained to perform the investigations and analyses of the present dam and to design the appropriate modifications and remedial measures.

- b. <u>O & M Maintenance and Procedures</u>. The following O & M maintenance and procedures are recommended:
 - (1) A program should be developed and put into action to keep trees and brush off the dam and out of the spill-way inlet and to control other vegetation.
 - (2) The erosion damage to the upstream slope should be repaired. Additional riprap, sized for this reservoir, should be placed on top of the existing riprap on the upstream slope to prevent further erosion of the slope and to eliminate the potential for breaching of the dam by erosion.
 - (3) The ogee weir should be repaired if it is to remain in place. The fence along the top of the ogee weir should be removed.
 - (4) The dam should be inspected regularly by qualified personnel to determine the presence of seepage on the downstream slope, in the abutments, or below the downstream toe, to determine the presence of slides in the downstream slope, and to observe the upstream slope for erosional damage.

APPENDIX A MAPS

APPENDIX B PHOTOGRAPHS

PHOTO NO. 2 UPSTREAM SLOPE TAKEN FROM EMERGENCY SPILLWAY

PHOTO NO. 3 INLET STRUCTURE TAKEN FROM STA. 5+00

PHOTO NO. 4
INLET STRUCTURE AND
UPSTREAM SLOPE TAKEN
FROM RIGHT ABUTMENT

PHOTO NO. 5 CLOSE-UP OF UPSTREAM SLOPE EROSION. STA. 4+70 TO STA. 6+00

PHOTO NO. 6 RIGHT ABUTMENT TAKEN FROM STA. 4+70

PHOTO NO. 7 DIKED POOL BELOW RIGHT ABUTMENT

PHOTO NO. 8
DOWNSTREAM SLOPE
TAKEN FROM RIGHT
ABUTMENT. NOTE
VEGETATIVE CHANGE
ONE-HALF WAY UP

PHOTO NO. 9 DEPRESSION NEAR TOE. STA. 4+50

PHOTO NO. 10 FREE WATER NEAR TOE. STA. 0+50

PHOTO NO. 11 UPSTREAM VIEW OF OGEE SPILLWAY

PHOTO NO. 12 WATER LEAKING FROM CRACK IN WEIR

PHOTO NO. 13 DOWNSTREAM FROM OGEE SPILLWAY

PHOTO NO. 14 EXIT CHANNEL FOR EMERGENCY SPILLWAY

PHOTO NO. 15 LEFT ABUTMENT TAKEN FROM STA. 4+70

PHOTO NO. 16 DOWNSTREAM FROM DAM. TAKEN FROM STA. 4+70

APPENDIX C PLAN, PROFILE AND SECTIONS

APPENDIX D HYDROLOGIC COMPUTATIONS

HYDROLOGIC COMPUTATIONS

- 1. The Mockes dimensionless standard curvalinear unit hydrograph and the SCS TR-20 program were used to develop the inflow hydrographs (see Plate DI). The inflow hydrograph for the 100-year flood was generated by the consultant using the TR-20 program.
 - a. Six-hour, twelve-hour, and twenty-four hour 100-year rainfall for the dam location was taken from NOAA Technical Paper 40. The 24-hour probable maximum precipitation was taken from the curves of Hydrometeorological Report No. 33 and current Corps of Engineers and St. Louis District policy and guidance for hydraulics and hydrology.
 - b. Drainage area = 1.40 square miles (895 acres).
 - c. Time of concentration of runoff = 58 minutes (computed from "Kirpich" formula.) 1/
 - c. Time of concentration of runoff = 58 minutes.
 - d. The antecedent storm conditions were heavy rainfall and low temperatures which occurred on the previous 5 days (SCS AMCIII). The initial pool elevation was assumed at the crest of the spillway.
 - e. The total 24-hour storm duration losses for the 100-year storm were 1.21 inches. The total losses for the 24-hour duration 1/2 PMF storm were 1.30 inches. The total losses for the PMF storm were 1.35 inches. These data are based on SCS runoff curve No. 90 and antecedent moisture conditions from SCS AMCIII.
 - f. Average soil loss rates = 0.05 inch per hour approximately.
- 2. The ogee weir discharge rating was developed using the standard formula $Q = CLH^{3/2}$ and coefficients derived from diagrams found in the Bureau of Reclamation publication, "Design of Small Dams". The flows over the dam crest were based on the broad-crested weir equation $Q = CLH^{3/2}$, where H is the head on the dam crest; the coefficient C, which varies with head, was taken from the USGS publication "TWRI, Book 3, Chapter 5, Measurement of Peak Discharge at Dams by Indirect Methods".
- 3. Floods were routed through the reservoir using the TR-20 program to determine the capabilities of the spillway and dam embankment crest. The storm rainfall patterns, inflow hydrographs and routed outflow hydrographs are shown on Plate D2.
 - 1/ The computation interval for the runoff hydrograph is automatically adjusted to 0.17 Tc by the TR-20 computer program.

HOSKINS-WESTERN-SONDEREGGER	COMPUTED BY 66 J	DATE 10/6/78 SHEET NO. 7870 - 2
CALCULATIONS FOR	CHECKED BY	DATE JOB NUMBER 23095
i		PROJECT MO Dam Insp.
<u> </u>	(#2) Fall 6	40. No 10,130
	75	predwith 2"steel post.
	31.	high with 4" wive most fence
451	\	-
	-\-	Concrete in good
		condition
Zackson on on		+++++++++++++++++++++++++++++++++++++++
	 	1 1=75 ft lang
	4.5	1 2=75 ft lang
		Est. 8 posts
- a l		Est. 8 posta
		Abut 90 to direction
	T \\L	of flow
<u> </u>		
OGE	E SPILL	WAY CREST
1,0		
From USBR Desig	nof Sme	all Doms -Scillney Sect
		3/
General Equat	ian = Q=	CLH2 88 271
To adj. tovet	Hect of s	steel posts and
	f dama	
		di orted by the
following to	rmula	
1=1-2(K/K2	+ Ka)He	77/
Kaz oz vound p		09.271 (assume posts as
2 2 2 2 3 7 8 7	SATS + FEMCE	p (exs)
L=75-2(8x.0)	2) + . 20) He	
	20) He	
= 75 - 172He		
C= From Flo	5. 189 \$ 1	91 pgs. 276,277.
		
		
		PLATE D-3
<u> </u>		

•

HOSKINS-WESTERN SONDEREGGER, INC. ENGINEERS ARCHITECTS PLANNERS LINCOLN, NEBRASKA

CHECKED BY _____DATE____

CALCULATIONS FOR

PROJECT MO DAM INSP

DGEE SPILLWAY Rtg.

DBEE SPIL	LW/ T Y	12 T.9.	eHer	lew Ci	L. Lar	(دو بطع)	1013
	p-J	۷			<u> </u>		D
		(75724)	유 Cv	C 45°		C2501	
E lev. 737.2	10	2	3	4	5	6	7 0
737.3	. 1	74.9	5 395	3.93			٥
737.4	. 2	74.9	2.5 3.44	3.92			20
737.6	. 4	74.7	1.25 3.91	3.89			7
737. 8	. 6	74.10	.933.87	3.88			135
5 738.2	1.0	74.3	,5 3.90	3.85			284
73 8 . 7	1.5	739	,33 3.71	3.79			515
739.2	2.0	73.6	,253.62	3.73	<u> </u>	<u> </u>	776
739.7	2.5	73.2	.2 3.5b	3.68			106
740.2	3.0	72.8	.17 3.50	3,64			137
740.7	3.5	72.5	143.46	3.61			171
dam Crest 741.2	4.0	72.1	.1253.45	3.61			2083
	4.5	71.8	.11 3.40	3,57			244
742.2	5.0	714	1 3,40	3.57			2850
742.5	5.3	71.2	.1 3.40	3.57			3101
15 7430	5.8	70.8	. 1 3.40	3.57			3530
743.5	6.3	70.4	,) 3,40	357			3974
741,4	4.2	72.0	, 123.40	3.67			2212
742.0	4.8	1	. / 3.40	-1			2694
20							
	- '\ <u>-</u> '\ <u>-</u>						
25			•				
							
			1				· · · · · · · · · · · · · · · · · · ·
			i				
30					 	PLA	TE D-4

HOSKINS-WESTERN-SONDEREGGER

COMPUTED BY S J DATE 10/9/78 SHEET NO. OF CHECKED BY DATE JOB NUMBER 33095

CAL	CUL	ATI	ONS	FOR

PROJECT_____

	1 1 1 1	-1 γ $+$ $+$ $+$ $+$		
Elev.		DGEE	EMBANK.	TOTAL
EE Crest 737. 2		0:1		6
737.3		9	-	a
73.7.14		26	-	20
737.6		7.4		
7.37 . 8		135		74 135
738.2		286		2,46
7.38.		515		5/5
739.2		776		776
739.7		1065		1055
740.2		1377		//377
740.7		1714		1714
	3: 1	2082	. 0	2032
741.4		22/2		2215
74/		2447	30	2477
742.0		2684		2834
742, 2		2850		3236
742.5		3101		1055
743.6	١ :	3530	2371	5900
743.5	5	3974	4087	3061
	1 1			
·	1 1			
	1	· '		
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	<u> </u>			
	!			
·				
	- - - - - - - - - - 	! ; ; ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		
				<u></u>
		1		
				•
				
•				

NOCKE MENT = 12 484
C CONCENDIATION C REGERALITIES C SOCIOTIVATORO DE RANTORERISTORE E E E

112000 112000 112000 112000 12

22.00 24.00 24.00 24.00 24.00 25.00

00.2500 2.7500 4.0500 14.98400 12.5000 21.2100

PLATE D-7

,

XSECTW STRCT 0 1

SUBNTH XSECTING RELIGIOUS NOT SECTION OF ENDATA

FULLOW	
DATA	
TAINJE AR	
Ţ	
TIOUS	
1100	

	6 <u>H</u> 2	Ц		2000000 2000000 2000000000000000000000	~			1.70	19:75	7.5% 31 7.5% 116	471 . uz 738 . ca	11:01/	7.1.5.1.7	A 18, cm
	SOIL Centrell	PM		ALLA INC. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				AREA = 1.40 7.77.71	1.1.55	7.89.187	476.53	1219 917	6 502 \$5 74 5 110	2 6146 CAR
	198 SOLE				ACKE			PR. 11646E 4	22.767	300 14	159.91	10%6.53	74.00) II • · · · · ·
	6.25 7713 8410 TAHLF 4	74.0	e e e e e e e e e e e e e e e e e e e	28. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	27730.39		1.316.5	1 27 6 57 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.4 ° 4.7 L	154. 16.	447 11177 75 54	10, 70,	761: 14	•
		-{AT 10b}=	CRUCOFF)	LTA T= 0 25.09 657.69 505.12 505.13 652.73 653.73 768	-1985=		F ELEVATIONS	LIA 1= 0 137.78	157.757	127.41	18:381	13: 22	74. 30	114.7.75
	PRE 1100	OF CONCESS	4 4 4	19,44,3 65,61 570,64,8 1853,29/3 1921,43/43 2705,49/3 2705,49/3 2705,49/3	CFS-		PLAF	157.20 3	4.29	104.21 3	402.67 738.45	120.1313	72.03.27	3466.75/5
	9946 00001 9976 00001 9976 00001 10000000000000000000000000000000	0 1186	io L	24.R0= 12.00 12.00 12.00 12.00 13.00 10.00	32, 11		ES	RU= 2.00 737.30	3.72	737.63	361,27 738,40	629,16 738,11	741.16	3414,79
	570 270 270	= 3/5	7555.813	ROCKAPH 12.F.R 59.047 5510.77 6510.77 6510.77 6510.77 6510.77 6510.75 6510.75 6510.75 6510.75 6510.75 6510.75 6510.75 6510.75 6510.75	IPAGE AREA=		AK DISCHAKGE 6406.894	TOROGRAPH, TZF 1 0.05 0 737,20	737.23	737,54	358.65/ D	765.26 158.79	1864.23	4241,51
	0000 0000	RUNOFF 89.8	2	HYDRO 2 01 54 66 462 09 608 99 608 99 80 07 30 07 12 26 196 38 91 10	S 0(1 1)KA	737.20	136	9.01 737.20	737.22	31,72	334,60 738,50	525,63	1688,44 740,66	4867,91
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STRUCTURE 1 1.40 INPUT CURVE NO. =	v.	50.002 336.637 643.13 643.13 689.367 2862.36 4404.2 1465.38	ER, IN INCHE	STRUCTURE ELEVATION= 7	v	737,20.	737.22	737,357	309.04 75A.25	506.2012	1438.91	5588*3617
10. 1	ECUTIVE CONTROL CARD STARTING THE ALTERNATE HO.=	RUNOFF ARFA= CONPUTED	PEAK TIMES 11.11 15.17 23.66		TUTAL WAT	RESVOR SURFACE	PEAK TIMES 16.50	D15CH6	P15CH6	VISCH6	VISCH6	01:CH6	015CHG	9HJ51q
STRUCTURE		SUPROUTINE		20000000000000000000000000000000000000		SUPROUT IN		7 17E 200 200	4 50 4 50	7.00	9.50	12.00	14,50	17.00
										F	LA	TF	D.	-9

PLATE D-9

•

)

\	17.00	FLEV	742.91	742.72	742,55	742.41	742,29	749.17	742,00	741.85	7,11,64	741.53
	19.50		741.08	740.81	•••	1429.58		~		1137.16	357.65 759.51	485.67
	22.00	PISCHG	820.51 2 2. 762.87 739.27 2 739.17	762.87	714.32 670.01 739.08 738.79	670.01 738.39	758.9122	591.27 734.84	158.78 738.72	530.38		461.72
	24.50		457.48 738.57	431,76 738,51		738.39	349.53		299, 782 6 274, 63 758, 25 758, 16	274.63		225.72 758.05
		TOTAL WATER.	Z	S ON DRAI	INCHES ON DRAINAGE AREA=	29.4667	CFS-	FS-HRS=	26.623.70	ACKE-FT=	1= 2200+18	91.

ENOCMP 1

Ç

PLATE D-10

and the second s

EXECUTIVE O	COUTROL CARD TANTING TIME= LIENNATE NO.=	ARD ML= 0.00	RAIN DEPTHE	104 COFFUT	_	FRON XSFCTB/S RAIN DURATION=	1.00 K	07 1 TO ASECTION TO ASECTION TO ASECTION TO A SECTION TO	0 ASECTA/STRUCT 11842 3 5011		a/ 1 CoupHions s
รบุกหดบา 1พf	RUTOFF ARFAT COMPUTED	STRUCTURE 40 CURVE NO.	PUT RUNOFF	CURVE 78.	.0 11ML	UF	COUCENTRATIONS	16.91			
	PLAK TIM 16.17 23.66	MES 6	PE	AK DISCHANGES 3744.525 106.135	3 F S	4	PEAK ELEVATION (RUNOFF)	5001			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3756 3756 3776 3776 3776 3776 3776 3776	HYINOURAPH, TZ6 999 47.95 3.74 21 257.49 265.47 1234.69 311.16 8325.15 2564.50 88 3325.15 2594.00 87 98.654 996.15 104.04 996.15	36846 374 3863474 381616 381616 386946 28966 28966 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 99666 996666 996666 996666 9966666 99666666 996666666 9966666666	119 3.75 119 3.75 119 3.17 217-51 2 1390 06 1889-767 10 1889-767 10 1889-767 10	+ + + + + + + + + + + + + + + + + + +	17.17.17.17.17.17.17.17.17.17.17.17.17.1	25 27 27 27 27 27 27 27 27 27 27 27 27 27	111.00 M	AREA = 1.1 15.23.15 22.51.15 3.921.115 3.921.115 4.922.15 101.23 101.23 101.23	20.25.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	_ =	ER. 1N	HES ON DRAIT	INAGE AREA=	14.16.1	5	-148= 1	15555.49	ACKE-F1	1011 =1.	11
รบุกหอบ1 1ห£	RL SVOR SURFACE	STRUCTURE ELEVATION=	737.20	,	08.1						1 PMF
	PENK TIMES	ES	PEAK	AK DISCHARGE. 2053,640	5F.S	4	PEAK ELEVATIORS	۲-	1 1.0 0	1101	J
11ME 3.75	013C16	737.20	137:20 4	итокобкари, т2E 1804 137.30	TZERU= 3.75 0.06 737.20	157.20	DFI TA T= 0.2	757.20	137.20	AKEA= 1.40 737.20	2) 11.11 C
6.25 6.25	DISCHE	737.20	737,21	737.21	757.527	3.85	737.25	157.27	8.738	15.25	11.20
8.75	DISCHG	737,38	737.43	43.29	737.55	75.32	83.80 m	737.65	100.40	148.53	110:3311
11.25	OTSCHIS ELEV	124.33	131.87	145.08	161.81,2	179.92	206.51 737.98	247.76 73h.09	294.5513	5445.57 758.35	558.71 (36.14
13.75	DISCHG	453.23	509.9914	574.31 738.81	640.45	709.41	781.331.5	757.55	104.51 759.50	1145.91	1557.92/1
16.25	DISCHG	1622.59	1856.98	1994,33	2047.6117	2046.36	2011.89	1901.70	1 "93, 46/8	1627.51	1759.04
16.75	DISCHG	1619.08	1474.6719	1341.48	1242.56	1147.48	1057.608.7	96.6.36 757,53	739.39	812.45 759.20	141.00 21
21.25	DISCHG	692.03	641.01	594, 58	138.7722	515.06	401.64	155.42 758.50	123.9123	401,5% 758,43	5/4,8/ 758,40
23.75	DISCHE	358.15	338,95.4	320.79	302.01 730.23	758.19	25% 255 5 758.12	756.00	213.23 736.00	132.78	175.9426
26.25 26.25	DISCHE	156.90	141.46	131.46	126,4627	121.26	137.73	111.40	160,6928	102.43	131.0
	TOTAL WATE	TEH, IN INCHE	HES ON DRAFIAGE	INGE WILLAZ	13,9265	S JO	CF S-104S; 1,	## No.5	ACNE-1-1	11	115 to 14

PLATE D-II

HYDROLOGY	2	HAM FOR 18M	4 1130 - DATED	JULY		
EXF CUTI	NO DAI	4 INSP FA	YETTE NEW CITY	RATION LIST		
HO DAM	INSP FA	YETTE NEW	CITY LAKE DAM			
C TABLE		VFLOCITY	Y INCREMENT =	0.200		
2000		0.0000	0.0800	0.1800 0.5300 0.5300	0.2700 0.4700 0.6100 0.500	0.5200 0.5100 0.6500
<b>10 10 1</b>		710	720	730	25.3	1967
<b>10</b> 20 20		2000	9999	2007	25.00	2000
*****		8000	6000	200	2000	000
****		920	920	920	200	25
9 EUNTIN	٦		. 92u	926	. y.se	. 958
STRUCTURE	RE NO.					
8 9 ENDTRL	H.		LLEVAT10h 757.2000	UISCHARGE 0.0000	STORAGE. 940.0000	
DIMENSI	INSTONLESS	HYDROGRAPH	- DELTA T =48	00.41		
*************************		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.1200 0.9500 0.9500 0.3390 0.1740 0.0170 0.0150	0.5100 0.5300 0.5300 0.14300 0.0550
6 9 FID FR	Ħ	000	200 200 200	000 000 000 000	0007	.000 .000 .000
RAINFAL	L TABLE	100.1	TIME INCREMEN	11 = 0.50		
ଅବସ୍ଥର୍ଶ		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0260 0.10760 0.10760 0.2540 0.2540 0.7670 0.3050	\$0.00000000000000000000000000000000000
9 ENDTR		., v. o	9830	945	0 .	300 <b>.</b>
200	•	0.000	0.030 0.050	0.02 0.02 0.06 0.06 0.06	0/0.	050.
<b>0</b> 2 4 4 5 5 1		6.1266 0.1766 0.520 0.7200 0.7360	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1300 0.2760 0.6300 0.7440	0.1400 0.3500 0.4500 0.7500 0.6400	0.1700 0.4300 0.6800 0.7700
7. C. C. C. C. C	Ę	0040	926.9	25.20 27.20 37.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2000
HA ITIF AL	L TABLE	710. S	TITE INCIGATO	0.5.0 = 10		
Ð		0.0000	0.0500	0.00.00	0.6000	u.1/80

00.544 00.544 00.544 00.546 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.6666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.6666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666 00.666

7465 2000 2000 2000 2000 2000 2000 2000

00.3500 00.3500 00.6500 11.0500 13.6500 64.6600 7.94600 7.94600

STANDARD CONTROL INSTRUCTIONS

SUPRTN XSECTN STHCT INI INZ UNT UATA NO. 1 HATA NO. 2 DATA HO. 3 PK 11 F V PH SIN RESVOR 0.000 1 1 1 1 0 0 T 737.200 0.000 1 1 1 1 0 0 ENDING

FOLLOW
HATA
TABULAR
2
ADDITIONS

STRUCTURE NO		SUBROUTIFIE H	140900000000000000000000000000000000000		34111108908	100 200 100	7.00	9.00	- 22 22 ATI	14.50	26 27 2-1
	TIVE CONTROL CARD STATING CARD STATING TIVE			ISCHE OTAL WAT	PESVOR SUNFACE EI PEAN TIMES	01,046 F1FV	PESCHS	015CHG	013CH6	012646	20. IO
	0 + + + + + + + + + + + + + + + + + + +	TOCTUR SVE NO	647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84/80 647/84	EK. 1N 1	STRUCTURE LEVATION= S	737.70	757.20	157.26	737.37	166,09	703.08
	RAPIECE SECTION OF THE SECTION OF TH	RUNOFF B9.8	11 11 11 11 11 11 11 11 11 11 11 11 11	U.U. S OH DRAT	737.20 PF	137.20	737.21	131,27	737.39	206.28	739,49
	10000000000000000000000000000000000000	CURVE = 78  CURVE = 78  1545-934  1545-934	06.24 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06.20 06	UINGE AKEA=	AK DISCHARGE 723.675		1.54	157.28	30.30	246.16 731.49	725.41
	7 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 T1MF GES	2680= 3.82 3.82 95.54 95.54 7261.51 6220.15 6220.15 11.14		12.1 GES	2FRO= 4.5a 737.20	137,22	137,23	42.77	268.30 758.70	73.1.03
	AIN TIME INC.	5	50000000000000000000000000000000000000	CFS	<u>.</u>	0.03	187.22	737, 50	50.55 757.35	\$50.03 754.29	707,46
	ENERT = 0	HTRA110F=		3-11RS=	KK ELEVAI	116 1, TA F = 0.	757,23	11.80	75.78	38.1.42	13.58
	0.25 Rabi Tante	10.0 101/5	201 101 101 101 101 101 101 101 101 101	35026	: 100 <b>1</b>	95 ° 25 9.5.01 7.5.7.5.1	1.7.35	15.35	157:59	40.4.25 7.5.38	03. · / 3
	7. X.EC410/S188		0,000 to 100 to	ACRE-		1984 1984 A	41.4	15.92	102.18	130, 16 130, 16	7.56. 35
	CC 67	100	AREA = 1.40 15.74 105.24 105.21 1341.17 1341.40 760.72	PET = 134		44 A= 1.40 0.40 7.57.20	157.25	7 57: 53	115:71	16:45.2	619,62
	10 H	, %	24.07 21.00 106.00 106.00 106.00 140.07 72.17	./4		64.0 157.51	187.781	20. ds 737. Sc	1.57.112	10.057	7.7.5

60-1-01		ACKE-FI	4945.75	F5-11KS=	S-L	5.4716	HAGE AREA=	IN INCHES ON URATHAUL	_	TOTAL WATER.	
61.61 787.51	757.50	737.58	757.60	737.61	737.62	737.63	737.64	737.65	737.67	DISCHG	27.00
137.00	104.55	103.01	143.63	1114.40	125.28	128.20	153.02	141.32	151.46	D15CHG FLEV	24.50
137.06	159.73	179.81	130.84	202.94	738.01	231,53 738,05	248.24 738.09	266.65	286.82	013CH0	22.00
30 \$ 95 7 50 5 25	322.57 756.27	738.32	36.3.74 758.56	197.10	412.26	433.21 738.55	469.16	499.08 738.66	555.97	DISCHG	19.50